Source code for

# ******************************************************************************
# Copyright 2017-2018 Intel Corporation
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# See the License for the specific language governing permissions and
# limitations under the License.
# ******************************************************************************

import logging
import math
from typing import List, Set

from scipy.spatial.distance import cosine as cos

from nlp_architect.common.cdc.mention_data import MentionDataLight
from import (
from import (
from import RelationExtraction
from import (
from nlp_architect.utils.string_utils import StringUtils

logger = logging.getLogger(__name__)

[docs]class WordEmbeddingRelationExtraction(RelationExtraction): def __init__( self, method: EmbeddingMethod = EmbeddingMethod.GLOVE, glove_file: str = None, elmo_file: str = None, cos_accepted_dist: float = 0.7, ): """ Extract Relation between two mentions according to Word Embedding cosine distance Args: method (optional): EmbeddingMethod.{GLOVE/GLOVE_OFFLINE/ELMO/ELMO_OFFLINE} (default = GLOVE) glove_file (required on GLOVE/GLOVE_OFFLINE mode): str Location of Glove file elmo_file (required on ELMO_OFFLINE mode): str Location of Elmo file """ if method == EmbeddingMethod.GLOVE: self.embedding = GloveEmbedding(glove_file) self.contextual = False elif method == EmbeddingMethod.GLOVE_OFFLINE: self.embedding = GloveEmbeddingOffline(glove_file) self.contextual = False elif method == EmbeddingMethod.ELMO: self.embedding = ElmoEmbedding() self.contextual = True elif method == EmbeddingMethod.ELMO_OFFLINE: self.embedding = ElmoEmbeddingOffline(elmo_file) self.contextual = True self.accepted_dist = cos_accepted_dist super(WordEmbeddingRelationExtraction, self).__init__()
[docs] def extract_all_relations( self, mention_x: MentionDataLight, mention_y: MentionDataLight ) -> Set[RelationType]: ret_ = set() ret_.add( self.extract_sub_relations(mention_x, mention_y, RelationType.WORD_EMBEDDING_MATCH) ) return ret_
[docs] def extract_sub_relations( self, mention_x: MentionDataLight, mention_y: MentionDataLight, relation: RelationType ) -> RelationType: """ Check if input mentions has the given relation between them Args: mention_x: MentionDataLight mention_y: MentionDataLight relation: RelationType Returns: RelationType: relation in case mentions has given relation or RelationType.NO_RELATION_FOUND otherwise """ if relation is not RelationType.WORD_EMBEDDING_MATCH: return RelationType.NO_RELATION_FOUND mention_x_str = mention_x.tokens_str mention_y_str = mention_y.tokens_str if StringUtils.is_pronoun(mention_x_str.lower()) or StringUtils.is_pronoun( mention_y_str.lower() ): if not self.contextual: return RelationType.NO_RELATION_FOUND if mention_x.mention_context is None or mention_y.mention_context is None: return RelationType.NO_RELATION_FOUND if self.is_word_embed_match(mention_x, mention_y): return RelationType.WORD_EMBEDDING_MATCH return RelationType.NO_RELATION_FOUND
[docs] def is_word_embed_match(self, mention_x: MentionDataLight, mention_y: MentionDataLight): """ Check if input mentions Word Embedding cosine distance below above 0.65 Args: mention_x: MentionDataLight mention_y: MentionDataLight Returns: bool """ match_result = False x_embed = self.embedding.get_head_feature_vector(mention_x) y_embed = self.embedding.get_head_feature_vector(mention_y) # make sure words are not 'unk/None/0' if x_embed is not None and y_embed is not None: dist = cos(x_embed, y_embed) if not math.isnan(dist): sim = 1 - dist if sim >= self.accepted_dist: match_result = True return match_result
[docs] @staticmethod def get_supported_relations() -> List[RelationType]: """ Return all supported relations by this class Returns: List[RelationType] """ return [RelationType.WORD_EMBEDDING_MATCH]